Skip to content

Dense retrieval models

Dense retrieval models are models that take in something like text or images and return a fixed sized array. This representation is then indexed and searchable by using approximate nearest neighbour algorithms along with a simililarty measure like cosine similarity or L2 distance.

Text

The following models are supported by default (and primarily based on the excellent sbert and Huggingface libraries and models).

These models can be selected when creating the index and are illustrated by the example below;

settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": False,
        "model": "flax-sentence-embeddings/all_datasets_v4_MiniLM-L6",
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-index", settings_dict=settings)

The model field is the pertinent field for selecting the model to use. Note, once an index has been created and a model has been selected, the model cannot be changed. A new index would need to be created with the alternative model. The model will be applied to all relevant fields. Field specific settings which allow different models to be applied to different fields is not currently supported but will be coming soon (and contributions are always welcome).

Although use case specific, a good starting point is the model flax-sentence-embeddings/all_datasets_v4_MiniLM-L6. It provides a good compromise between speed and relevancy. The model flax-sentence-embeddings/all_datasets_v4_mpnet-base provides the best relevancy (in general).

ONNX

ONNX versions of the above models can also be used. ONNX is an open format for models that is designed to allow interoperability of models across frameworks. Other benefits include faster inference (model and use case specific but ~2x) and lower memory usage. The ONNX conversion of the above models happens 'on the fly'. To use one of the above models as an ONNX version, simply replace the text preceding the first '/' with 'onnx'. For example;

  • onnx/all-MiniLM-L6-v1
  • onnx/all-MiniLM-L6-v2
  • onnx/all_datasets_v3_MiniLM-L12
  • onnx/all_datasets_v3_MiniLM-L6
  • onnx/all_datasets_v4_MiniLM-L12
  • onnx/all_datasets_v4_MiniLM-L6

The 'mpnet' based models are not currently supported by the ONNX conversion but will be added soon. See below for the example how to use an ONNX model:

settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": False,
        "model": "onnx/all_datasets_v4_MiniLM-L6",
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-index", settings_dict=settings)

Images

The models that are used for tensorizing images come from CLIP. We support two implementations, one from OpenAI, and the other one is an open source implementation called open clip. The following models are supported;

OpenAI

  • RN50
  • RN101
  • RN50x4
  • RN50x16
  • RN50x64
  • ViT-B/32
  • ViT-B/16
  • ViT-L/14
  • ViT-L/14@336px

Although use case specific, a good starting point is the model ViT-B/16. It provides a good compromise between speed and relevancy. The models ViT-L/14 and ViT-L/14@336px provides the best relevancy (in general) but are typically slower.

settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": True,
        "model": "ViT-L/14",
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-index", settings_dict=settings)

Open CLIP

  • open_clip/RN50/openai
  • open_clip/RN50/yfcc15m
  • open_clip/RN50/cc12m
  • open_clip/RN50-quickgelu/openai
  • open_clip/RN50-quickgelu/yfcc15m
  • open_clip/RN50-quickgelu/cc12m
  • open_clip/RN101/openai
  • open_clip/RN101/yfcc15m
  • open_clip/RN101-quickgelu/openai
  • open_clip/RN101-quickgelu/yfcc15m
  • open_clip/RN50x4/openai
  • open_clip/RN50x16/openai
  • open_clip/RN50x64/openai
  • open_clip/ViT-B-32/openai
  • open_clip/ViT-B-32/laion400m_e31
  • open_clip/ViT-B-32/laion400m_e32
  • open_clip/ViT-B-32/laion2b_e16
  • open_clip/ViT-B-32/laion2b_s34b_b79k
  • open_clip/ViT-B-32-quickgelu/openai
  • open_clip/ViT-B-32-quickgelu/laion400m_e31
  • open_clip/ViT-B-32-quickgelu/laion400m_e32
  • open_clip/ViT-B-16/openai
  • open_clip/ViT-B-16/laion400m_e31
  • open_clip/ViT-B-16/laion400m_e32
  • open_clip/ViT-B-16-plus-240/laion400m_e31
  • open_clip/ViT-B-16-plus-240/laion400m_e32
  • open_clip/ViT-L-14/openai
  • open_clip/ViT-L-14/laion400m_e31
  • open_clip/ViT-L-14/laion400m_e32
  • open_clip/ViT-L-14/laion2b_s32b_b82k
  • open_clip/ViT-L-14-336/openai
  • open_clip/ViT-H-14/laion2b_s32b_b79k
  • open_clip/ViT-g-14/laion2b_s12b_b42k

Like the OpenAI based models, the larger ViT based models typically perform better. For example, open_clip/ViT-H-14/laion2b_s32b_b79k is the best model for relevency (in general) and surpasses even the best models from OpenAI.

The names of the open clip models are in the format of "implementation source / model name / pretrained dataset". The detailed configurations of models can be found here.

settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": True,
        "model": "open_clip/ViT-H-14/laion2b_s32b_b79k",
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-index", settings_dict=settings)

ONNX Clip

Onnx versions of CLIP models are available - this is in addition to the native Pytorch versions described above. Both the original OpenAI CLIP models and open_clip models are available. The onnx models are named according to the following format:

{ONNX_PRECISION}-{SOURCE}-{MODEL_NAME}-{PRETRAINED}

Parameters Types Options Description
ONNX_PRECISION String onnx16 or onnx32 Precision of the model.
SOURCE String openai or open_clip The implementation of the model.
MODEL_NAME String e.g., ViT-L-14 The name (architecture) of the CLIP model.
PRETRAINED String e.g., openai, laion400m_e32 The pretrained dataset of the model, only available for open_clip models.
  • onnx32/openai/ViT-L/14
  • onnx16/openai/ViT-L/14
  • onnx32/open_clip/ViT-L-14/laion400m_e32
  • onnx16/open_clip/ViT-L-14/laion400m_e32
  • onnx32/open_clip/ViT-L-14/laion2b_s32b_b82k
  • onnx16/open_clip/ViT-L-14/laion2b_s32b_b82k
  • onnx32/open_clip/ViT-L-14-336/openai
  • onnx16/open_clip/ViT-L-14-336/openai
  • onnx32/open_clip/ViT-B-32/openai
  • onnx16/open_clip/ViT-B-32/openai
  • onnx32/open_clip/ViT-B-32/laion400m_e31
  • onnx16/open_clip/ViT-B-32/laion400m_e31
  • onnx32/open_clip/ViT-B-32/laion400m_e32
  • onnx16/open_clip/ViT-B-32/laion400m_e32
  • onnx32/open_clip/ViT-B-32/laion2b_e16
  • onnx16/open_clip/ViT-B-32/laion2b_e16
  • onnx32/open_clip/ViT-B-32-quickgelu/openai
  • onnx16/open_clip/ViT-B-32-quickgelu/openai
  • onnx32/open_clip/ViT-B-32-quickgelu/laion400m_e31
  • onnx16/open_clip/ViT-B-32-quickgelu/laion400m_e31
  • onnx16/open_clip/ViT-B-32-quickgelu/laion400m_e32
  • onnx32/open_clip/ViT-B-32-quickgelu/laion400m_e32
  • onnx16/open_clip/ViT-B-16/openai
  • onnx32/open_clip/ViT-B-16/openai
  • onnx16/open_clip/ViT-B-16/laion400m_e31
  • onnx32/open_clip/ViT-B-16/laion400m_e31
  • onnx16/open_clip/ViT-B-16/laion400m_e32
  • onnx32/open_clip/ViT-B-16/laion400m_e32
  • onnx16/open_clip/ViT-B-16-plus-240/laion400m_e31
  • onnx32/open_clip/ViT-B-16-plus-240/laion400m_e31
  • onnx16/open_clip/ViT-B-16-plus-240/laion400m_e32
  • onnx32/open_clip/ViT-B-16-plus-240/laion400m_e32
  • onnx16/open_clip/ViT-H-14/laion2b_s32b_b79k
  • onnx32/open_clip/ViT-H-14/laion2b_s32b_b79k
  • onnx16/open_clip/ViT-g-14/laion2b_s12b_b42k
  • onnx32/open_clip/ViT-g-14/laion2b_s12b_b42k
  • onnx16/open_clip/RN50/openai
  • onnx32/open_clip/RN50/openai
  • onnx16/open_clip/RN50/yfcc15m
  • onnx32/open_clip/RN50/yfcc15m
  • onnx16/open_clip/RN50/cc12m
  • onnx32/open_clip/RN50/cc12m
  • onnx16/open_clip/RN50-quickgelu/openai
  • onnx32/open_clip/RN50-quickgelu/openai
  • onnx16/open_clip/RN50-quickgelu/yfcc15m
  • onnx32/open_clip/RN50-quickgelu/yfcc15m
  • onnx16/open_clip/RN50-quickgelu/cc12m
  • onnx32/open_clip/RN50-quickgelu/cc12m
  • onnx16/open_clip/RN101/openai
  • onnx32/open_clip/RN101/openai
  • onnx16/open_clip/RN101/yfcc15m
  • onnx32/open_clip/RN101/yfcc15m
  • onnx16/open_clip/RN101-quickgelu/openai
  • onnx32/open_clip/RN101-quickgelu/openai
  • onnx16/open_clip/RN101-quickgelu/yfcc15m
  • onnx32/open_clip/RN101-quickgelu/yfcc15m
  • onnx16/open_clip/RN50x4/openai
  • onnx32/open_clip/RN50x4/openai
  • onnx16/open_clip/RN50x16/openai
  • onnx32/open_clip/RN50x16/openai
  • onnx16/open_clip/RN50x64/openai
  • onnx32/open_clip/RN50x64/openai

The onnx32 variants should get approximately the same results as the native float32 Pytorch implementations but with a lower latency. In our tests, it can reduce the index time per image by 25% (although this ultimately depends on the exact model and hardware). We encourage you to use this model if you need to index a large amount of images with the best accuracy.

The onnx16 is the float16 version of the above model. It provides even faster inference speed, with a 65% reduction compared to Pytorch and a 54% compared to the onnx32 variant (although this ultimately depends on the exact model and hardware). However, its searching accuracy is not as good as the float32 version. This is more pronunced when searching across modalities like text-image compared to within the same modality like image-image. If you really care about indexing speed but are less sensitive to accuracy, this might be your choice. Quantitative evaluation for both relevency and latency is encouraged for your use case to determine the best model.

To use these onnx CLIP models, simply specify them at index creation time:

# For openai model:
settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": True,
        "model": "onnx32/openai/ViT-L/14",
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-index", settings_dict=settings)
# For open_clip model:
settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": True,
        "model": "onnx32/open_clip/ViT-L-14-336/openai",
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-index", settings_dict=settings)

Generic Models

You can also use models that are not supported by default.

settings = {
    "index_defaults": {
        "treat_urls_and_pointers_as_images": False,
    "model": 'unique-model-alias',
        "model_properties": {"name": "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
                            "dimensions": 384,
                            "tokens": 128,
                            "type": "sbert"},
        "normalize_embeddings": True,
    },
}
response = mq.create_index("my-generic-model-index", settings_dict=settings)

The model field is required and acts as an identifying alias to the model specified through model_properties. If a default model name is used in the name field, model_properties will override the default model settings.

Currently, models hosted on huggingface model hub are supported. These models need to output embeddings and conform to either the sbert api or huggingface api. More options for custom models will be added shortly, including inference endpoints.

Required Keys for model_properties

Name Type Description
name String Name of model in library
dimensions Integer Dimensions of model

Optional Keys for model_properties

Search Parameter Type Default value Description
tokens Integer 128 Number of tokens
type String "sbert" Type of model loader

Other media types

At the moment only text and images are supported. Other media types and custom media types will be supported soon.